ORGANOMETALLICS

Differentiation between Chelate Ring Inversion and Aryl Rotation in a CF₃-Substituted Phosphine-Sulfonate Palladium Methyl Complex

Ge Feng, Matthew P. Conley, and Richard F. Jordan*

Department of Chemistry, The University of Chicago, 5735 Sout[h E](#page-9-0)llis Avenue, Chicago, Illinois 60637, United States

S Supporting Information

[AB](#page-9-0)STRACT: [The solution](#page-9-0) conformations and dynamic properties of the CF_3 -sbustituted (*ortho-phosphinoarenesulfonate*)Pd complexes (PO-CF₃)-PdMe(L) ($[PO-CF_3]^- = 2-\{(o-CF_3-Ph)_2P\}-4-Me-benzene subfonate, L = 2,6$ lutidine (3), pyridine (4)) were studied by NMR spectroscopy, taking particular advantage of ³¹P−¹⁹F through-space couplings and ¹H−¹H and ¹H−¹⁹F nuclear Overhauser effects. In CD₂Cl₂ solution in the temperature range of −80 to 20 °C, 3 adopts an $exo₂$ conformation. One o -CF₃-Ph ring is positioned such that the CF_3 group points toward Pd (exo) and exhibits through-space $^4J_{\rm PF}$ coupling. The other o -CF₃-Ph ring is positioned such that the CF_3 group points away from Pd (endo) and does not exhibit throughspace ${}^{4}J_{\rm PF}$ coupling, and the o -H lies in the deshielding region near an axial site of the Pd square plane and exhibits a low-field chemical shift ($\delta > 9$). Complex 4 exists as a 2:1 mixture of $e x o_2$ and $e x o_3$ isomers in CD_2Cl_2 solution

at −90 °C. In exo₂-4, one CF₃ group is exo and exhibits through-space $^4J_{\rm PF}$ coupling, while the other CF₃ group is *endo* and does not exhibit through-space $^4J_{\rm PF}$ coupling. In exo_3 -4, both CF₃ groups are exo and exhibit through-space $^4J_{\rm PF}$ couplings. Complex 4 undergoes two dynamic processes: rotation of the axial o -CF₃-Ph ring (A_aR), which interconverts $e\alpha_{2}$ -4 and $e\alpha_{3}$ -4 (ΔG^{\ddagger} = 9.9(5) kcal/mol), and chelate ring inversion (RI), which permutes the axial and equatorial o -CF₃-Ph rings ($\Delta G^{\ddagger} = 21(1)$ kcal/ mol).

■ **INTRODUCTION**

Palladium(II) alkyl complexes that contain ortho-phosphinoarenesulfonate ligands ([PO][−]) exhibit unique behavior in olefin polymerization.¹ After the seminal reports by Drent and Pugh in 2002,² (PO)PdR(L) species (L = labile ligand, Scheme 1) have been stu[d](#page-9-0)ied extensively by the groups of Claverie,³

Jordan,⁴ Mecking,⁵ Nozaki,⁶ Rieger,⁷ and others.⁸ These catalysts polymerize ethylene to linear polyethylene and copoly[m](#page-9-0)erize ethyl[en](#page-9-0)e with [a](#page-9-0) variety o[f](#page-9-0) polar vinyl [mo](#page-9-0)nomers to form functionalized linear polymers with functional groups incorporated at both in-chain and chain-end positions. Additionally, (PO)PdR(L) complexes catalyze the nonalternating copolymerization of ethylene and $CO^{2b,9}$ and the alternating copolymerization of CO with vinyl acetate and methyl acrylate.¹⁰

In the solid-state structure of the prototypical (PO)Pd c[o](#page-9-0)mplex $(2-(\theta \cdot OMe-Ph)_{2}P\}$ -benzenesulfonate)PdMe(py) (Scheme 1, $R^1 = R^2 = OMe$),^{9d} the (PO)Pd chelate ring adopts a boat conformation, and the o-MeO-Ph rings occupy pseudoaxial and pseudoequatori[al](#page-9-0) positions. Howell and coworkers have developed a simple convention for describing the conformations of Ar_3PX species $(X = \text{long pair}, O, \text{or metal})$ that contain ortho substituents on the Ar rings (Scheme 2).¹¹ The Ar ring is designated as exo if the ortho substituent points toward the X group ($|\theta_{X-P-C1-C2}| < 90^\circ$) and endo if it p[oi](#page-1-0)[nts](#page-9-0) away from the X group ($|\theta_{X-P-C1-C2}| > 90^\circ$). In (PO)PdMe(L) complexes, the ArSO₃^{$-$} group is always *exo* because the $-SO_3$ ^{$-$} group coordinates to Pd, but the other two P-Ar rings can be either *exo* or *endo*. In $(2-\{(o-OMe-Ph),P\}$ -benzenesulfonate)- $PdMe(py)$ (Scheme 1), the methoxy group on the pseudoaxial

Received: July 3, 2014 Published: August 21, 2014

Scheme 2. Endo and Exo Conformations in $Ar₃PX$ Species

 o -MeO-Ph ring is endo $(R¹$ in A[\), while](http://pubs.acs.org/action/showImage?doi=10.1021/om500699t&iName=master.img-002.png&w=139&h=89) that on the pseudoequatorial ring is *exo* (\mathbb{R}^2 in A), and therefore the [PO][−] ligand in this complex adopts an $e x o_2$ conformation.

The ${}^{1}H$ NMR spectrum of $(2-\{(o\text{-}OMe\text{-}Ph)_2P\}-4\text{-}Me\text{-}P)$ benzenesulfonate)PdMe(py) at −80 °C contains two OCH³ resonances, indicating that exchange of the two methoxy groups is slow on the NMR time scale. However, only one $OCH₃$ resonance is observed at ambient temperature, indicative of fast methoxy exchange. The barrier for permutation of the methoxy groups is ΔG^{\ddagger} = 10.5 kcal/mol at -50 °C.^{4c} Other (PO)PdMe(py) complexes that contain ortho-substituted P-Ar rings exhibit similar dynamic behavior.^{3c,4c}

For $(PO)Pd(R)(L)$ species that contain *ortho-substituted P-*Ar groups, several dynamic processes [are p](#page-9-0)ossible (Scheme 1): chelate ring inversion (RI), which exchanges the pseudoaxial and pseudoequatorial P-Ar groups, and rotation of [th](#page-0-0)e pseudoaxial and pseudoequatorial P-Ar rings around the P− C_{ipso} bonds (A_aR, A_eR), which exchanges the *ortho* substituents between exo and endo positions. The observation of inequivalent methoxy groups in $(2-(\rho \text{-} OMe\text{-}Ph)_2P)$ -4-Mebenzenesulfonate)PdMe(py) at −80 °C implies that either RI is slow or, if RI is fast, both A_aR and A_eR are slow. The observation of fast methoxy exchange at ambient temperature requires that RI is fast and A_aR and/or A_eR is fast. Note that when RI is fast, A_aR and A_eR cannot be differentiated. Recently Caporaso, Mecking, and co-workers reported an experimental and computational study of the dynamic properties of a series of [PO][−] salts, [PO]H zwitterions, and corresponding "(PO)PdMe" complexes (generated in situ by halide abstraction from the cation-bridged $[(PO)PdMe(Cl)-\mu-M]_n$ (M = Na or Li) species in CD₃OD or DMSO- d_6 solution).¹² The authors concluded that for " $[PO-(o-R-Ph)₂]$ PdMe" species in the range of −90 to 130 °C chelate ring inversion is alwa[ys](#page-9-0) fast, and the inequivalence of o-R-Ph rings observed at low temperature is due to slow aryl rotation.¹³

The dynamic properties of $(PO)Pd(R)(L)$ species may influence their reactivity in several wa[ys.](#page-9-0) First, it has been proposed that insertion of (PO)Pd(R)(ethylene) species in ethylene polymerization occurs by initial isomerization of the ground-state cis-P,R isomer to the trans-P,R isomer via a five- $\text{coordinate} \ (\kappa^3 \text{-} P, O, O\text{-PO}) \text{Pd}(R) (\text{ethylene}) \ \text{intermediate} \ \text{or}$ transition state, followed by migratory insertion.^{4f,6c,14} The rigidity of the (PO)Pd framework may influence the barrier to this isomerization process. Second, several interes[ting st](#page-9-0)ereoselective or potentially stereoselective reactions catalyzed by (PO)Pd(R)(L) complexes have been developed recently, including the asymmetric copolymerization of vinyl acetate and CO catalyzed by Pd complexes bearing a P-chiral [PO][−] ligand^{10c} and the homooligomerization of methyl acrylate catalyzed by "(PO)PdMe" species bearing a series of [PO][−] ligan[ds.](#page-9-0)¹³ The dynamic properties of the $(PO)Pd(R)(L)$ catalysts may influence the stereoselectivity in these reactions.¹³

The objective of the present work was to design a system for which RI and AR could be differentiated. ¹⁹F NMR studies have been widely used to probe the solution conformations and dynamic properties of fluorinated organometallic species.¹⁵ Through-space 19 F couplings and 1 H $-^{19}$ F nuclear Overhauser effects (NOEs) can often provide unique information that [is](#page-9-0) otherwise unavailable. In this work we exploited these phenomena to characterize the RI and AR processes in (PO- $CF_3)$ PdMe(py) (4, [PO-CF₃]⁻ = 2-{(o -CF₃-Ph)₂P}-4-Mebenzenesulfonate).

■ RESULTS AND DISCUSSION

Synthesis and Solid-State Structure of Na[2- $\{$ (o-CF₃- $Ph)_2$ P}-4-Me-benzenesulfonate] (Na[1], Na[PO-CF₃]). Na[1] was synthesized by the reaction of $P(\rho - CF_3 - Ph)$ ₂Cl with (i) lithiated isobutyl p-toluenesulfonate followed by deprotection of the sulfonate ester with NaI or (ii) dilithiated p-toluenesulfonic acid followed by cation exchange with NaCl (Scheme 3). The isolated yields for both routes are ca. 65%.

The major side product for both reactions was $(o-CF_{3-})$ $Ph)_2P(=O)P(o-CF_3-Ph)_2$ (2). Compound 2 is probably formed by oxidation of $(o-CF_3-Ph)_2P-P(o-CF_3-Ph)_2$ during workup under air; the latter species may form by lithium/ halogen exchange of $P(\sigma - CF_3 - Ph)$ ₂Cl followed by coupling of $\text{LiP}(\sigma-\text{CF}_3-\text{Ph})_2$ and $\text{P}(\sigma-\text{CF}_3-\text{Ph})_2\text{Cl}^{16}$ or by single-electron transfer between Li[[]isobutyl p-toluenesulfonate] or Li₂[ptoluenesulfonic acid] and $P(\rho - CF_3 - Ph)$ ₂Cl followed by radical coupling (see Supporting Information).

Slow diffusion of pentane into a wet CH_2Cl_2 solution of Na[1] in the [presence of 18-crown-6 re](#page-9-0)sults in crystallization of $[Na(18\text{-}crown-6)(H₂O)][1]$, which was characterized by X-ray diffraction. The $[Na(18-crown-6)(H_2O)]^+$ and $[1]^-$ ions form a dimeric structure that is held together by hydrogen bonds between the H₂O molecules and the ArSO₃⁻ groups (Figure 1). The hydrogen atoms that are involved in the hydrogen bond network, H10A and H10B, were located, and their positi[on](#page-2-0)s were refined isotropically. The O10−O1 (2.94 Å) and O10− O2 (2.87 Å) distances are consistent with the presence of hydrogen bonds.¹⁷

Figure 1. Molecular structure of $[Na(18\text{-}crown-6)(H,0)][1]$. Hydrogen atoms that are not involved in hydrogen bonding are omitted. Selected bond lengths (Å) and angles (deg): P1−C1 1.853(5), P1−C8 1.856(5), P1−C15 1.845(5); C1−P1−C8 100.4(2), C8−P1−C15 98.8(2), C15−P1−C1 102.1(2).

The $[1]^-$ anion adopts an exo_3 propeller conformation in which the aryl rings are rotated ca. 40° off the corresponding (lone pair)−P−C_{ipso} planes in the same direction.¹⁸ The two o-CF3−Ph rings are thus inequivalent. Tris(ortho-substitutedaryl)-phosphines normally exhibit $e x o_3$ conforma[tio](#page-9-0)ns because the ortho substituents cause less steric congestion when they point toward the P lone pair (exo) rather than toward the other aryl rings (endo). For example, $P(o\text{-}C F_3 P h)_3^{19}$ and $[\text{HNEt}_3][2 {(o\text{-}OMe\text{-}Ph)_2P}$ -benzenesulfonate]²⁰ also have *exo*₃ structures in the solid state.

In [Na(18-crown-6)(H₂O)][1], [the](#page-9-0) P1–F5 (2.774 Å), P1– F1 (2.994 Å), and P1−O3 (2.938 Å) distances are all shorter than the corresponding sums of van der Waals radii (P, F: 3.27 Å; P, O: 3.32 Å),²¹ and the F1–P1–C15 (169°), F5–P1–C1 (176°), and O3−P1−C8 (170°) angles are all close to 180°. Gabbaïand co-[wo](#page-9-0)rkers have noted similar features in the zwitterionic species 1 -Mes₂FB^(−)-2-MePh₂P⁽⁺⁾-benzene and similar compounds and ascribed them to lone-pair(F) \rightarrow $\sigma^*(P-C)$ interactions.²² Similar lone-pair(F) $\rightarrow \sigma^*(P-C)$ and lone-pair(O) $\rightarrow \sigma^*(P-C)$ interactions may be present in $[Na(18\text{-}crown-6)(H₂O)][1].$ $[Na(18\text{-}crown-6)(H₂O)][1].$ $[Na(18\text{-}crown-6)(H₂O)][1].$

Dynamic Properties of [1]⁻. The ¹⁹F{¹H} NMR spectrum of Na[1] in DMSO- d_6 at 25 °C consists of two doublets (⁴J_{PF} = 62, 55 Hz), which shows that the two o -CF₃-Ph rings are inequivalent on the NMR time scale, consistent with the solidstate structure. Similar ${}^{31}P-{}^{19}F$ couplings were observed in P(o - $CF_3\text{-}Ph$)₃ but not in O=P(o -CF₃-Ph)₃,^{19,23} suggesting that these couplings are transmitted through space via lonepair(F)-lone-pair(P) interaction[s](#page-9-0).^{15c,24} As [th](#page-10-0)e temperature is raised, the two doublets broaden and coalesce to one doublet $({}^{4}J_{\rm PF} = 60$ Hz, Figure 2). The free [en](#page-9-0)[er](#page-10-0)gy of activation for this

Figure 2. [Observed and simulated variable-temperature](http://pubs.acs.org/action/showImage?doi=10.1021/om500699t&iName=master.img-005.jpg&w=199&h=206) $^{19}{\rm F} \{^1{\rm H}\}$ NMR spectra of Na[1] in DMSO- d_6 solution.

process, $\Delta G^{\ddagger} = 16.0(4)$ kcal/mol at 55 °C, was determined from a full line shape analysis of these spectra over the temperature range 40−100 °C. A similar value (16.1(5) kcal/ mol) was obtained from the coalescence of the H^6 resonances of the o -CF₃-Ph groups in the variable-temperature ¹H NMR spectra (see Supporting Information). A similar barrier (ca. 16 kcal/mol) was reported for Na[2- $\{(\rho$ -CF₃-Ph)₂P}-benzenesulfonate] in DMSO- d_6 solution.¹³

Previous [studies](#page-9-0) [by](#page-9-0) [NMR](#page-9-0) [spec](#page-9-0)troscopy and molecular mechanics computations ha[ve](#page-9-0) shown that tris(ortho-substituted-aryl)-phosphines normally adopt $e x o_3$ conformations in solution, consistent with their solid-state structures, and that exchange of the ortho-substituents occurs via a "three-ring-flip" mechanism, in which all three aryl rings rotate through the corresponding $X-P-C_{ipso}$ planes (i.e., flip) in a concerted manner.^{11,13,19,25} It is likely that the CF_3 groups in $[1]^-$ also exchange by this mechanism, as illustrated in Scheme 4.

Synt[hesis](#page-9-0) [an](#page-10-0)d Solid-State Structure of $(PO-CF₃)$ PdMe-**(2,6-lutidine) (3).** The reaction of Na[1] with ${PdMe(2,6$ lutidine)(μ -Cl) $\}$ ₂ affords (PO-CF₃)PdMe(2,6-lutidine) (3) in 69% isolated yield (Scheme 5). The solid-state structure of 3 (Figure 3) is essentially the same as that of the analogous

Scheme [4](#page-3-0). Possible Mecha[nis](#page-3-0)m for the Exchange of CF_3 Groups in [1][−]

Scheme 5. Synthesis of 3 and 4

(PO)PdMe(2,6-lutidine) complex that contains the 2-{ $(o$ -CF₃- $(\text{Ph})_2$ P}-benzenesulfonate ligand.²⁶ In 3, the $[\text{PO-CF}_3]$ ⁻ ligand binds to the square-planar Pd center in a κ^2 -P,O mode, and the chelate ring adopts a boat co[nfo](#page-10-0)rmation.²⁷ The phosphine exhibits an $e x o_2$ conformation in which the ArSO₃⁻ and the pseudoequatorial o -CF₃-Ph (F4, F5, F6) gr[ou](#page-10-0)p are *exo* (point toward Pd) and the pseudoaxial o -CF₃-Ph (F1, F2, F3) group is endo (points away from Pd). The $exo-CF_3$ group is positioned below one axial site of the Pd center, and the shortest Pd−F distance (Pd1−F4 3.079(3) Å) is nearly equal to the sum of the van der Waals radii (Pd, F: 3.10 Å).²¹ The other Pd axial site is occupied by the ortho hydrogen (H17) of the endo o -CF₃-Ph ring, and the Pd1−H17 distance ([2.6](#page-9-0)2 Å) is shorter than the sum of the van der Waals radii (Pd, H: 2.83 Å).²¹ Close M−H contacts involving the ortho-hydrogens of arylphosphine ligands are common in square-planar d⁸ metal comple[xes](#page-9-0).^{4c,7c,28}

Solution Structure of 3. At -80 °C, the 1 H NMR spectrum of 3 in CD_2Cl_2 solution contains [one](#page-9-0) [Pd](#page-10-0)-CH₃ resonance and two equal-intensity lutidine methyl resonances, the $^{31}{\rm P}\{^1{\rm H}\}$ spectrum comprises a quartet (4 the ³¹P{¹H} spectrum comprises a quartet (⁴J_{PF} = 24), and the ¹⁹F{¹H} spectrum consists of a singlet and a doublet (⁴J_{PF} = 24) of equal intensity. These spectra are essentially unchanged at 25 °C. These results show that 3 exists as a single conformer with inequivalent o -CF₃-Ph units and that rotation around the Pd− N bond is slow on the NMR time scale under these conditions. Only one of the two CF_3 groups is coupled with phosphorus. A detailed analysis, discussed below, shows that it is the exo -CF₃ group $(\mathrm{CF^{4}F^{5}F^{6}})$ that engages in this $\mathrm{^{31}P-^{19}F}$ coupling.

The ¹H NMR spectrum of 3 contains a resonance at δ 9.12 (dd, J_{PH} = 18, J_{HH} = 7) that integrates for 1H. This low-field chemical shift is characteristic for an ortho hydrogen of a pseudoaxial P-aryl ring that is positioned in the deshielding region close to an axial site of the Pd square plane.²⁸ Therefore, with reference to the solid-state structure, this resonance is assigned to H17 (Figure 3). The ¹H−¹H NOE[SY](#page-10-0) spectrum (Figure 4) shows that H17 is close to one of the lutidine-CH₃

Figure 4. ${}^{1}H-{}^{1}H$ NOESY spectrum of 3 in CD_2Cl_2 solution.

Figure 3. Two views of the molecular structure of 3[. Hydrogen atoms except H17 are omitted. Selected bond lengths \(Å\) and angles \(d](http://pubs.acs.org/action/showImage?doi=10.1021/om500699t&iName=master.img-008.jpg&w=411&h=220)eg): Pd1−P1 2.2343(16), Pd1−O1 2.134(3), Pd1−N1 2.100(4), Pd1−C8 2.001(5), Pd1−F4 3.079(3), Pd1−H17 2.62; P1−Pd1−O1 94.14(10), O1−Pd1−N1 86.98(15), N1−Pd1−C8 89.09(19), C8−Pd1−P1 90.06(15).

groups (C7) and the Pd-CH₃ group (C8), confirming the exo conformation of H17. H18−H20 were assigned by the COSY spectrum. The ¹⁹F−¹H HOESY spectrum (Figure 5) shows

Figure 5. ¹⁹F⁻¹H HOESY NMR spectrum of 3 in CD₂Cl₂ solution. The ¹[H aliphatic region is shown at the top, and the aromatic region i](http://pubs.acs.org/action/showImage?doi=10.1021/om500699t&iName=master.img-010.jpg&w=232&h=264)s shown at the bottom.

that the ¹⁹F singlet resonance correlates with H20 and therefore corresponds to the endo-CF₃ group, i.e., $CF¹F²F³$. Accordingly, the ¹⁹F doublet is assigned to CF⁴F⁵F⁶. The ¹⁹F−¹H HOESY spectrum also shows that the $\mathrm{CF}^4\mathrm{F}^5\mathrm{F}^6$ group is close to the other lutidine-CH₃ group $(C6)$ and thus establishes that this $CF₃$ group is *exo*. Collectively, these NMR results show that the solution structure of 3 is similar to the solid-state structure and features an $e x o_2$ conformation of the $[PO-CF_3]^-$ ligand. Furthermore, the observation that $31P-19F$ coupling is present for the exo -CF₃ but not the endo-CF₃ group, even though the fluorines on both $CF₃$ groups are four bonds away from the phosphorus, indicates that this 31P−19F coupling arises by a through-space mechanism. This through-space coupling may arise from overlap of lone-pair(F) and $\sigma(P-Pd)$ orbitals. Similar 31P−31P through-space coupling was attributed to lonepair(P)– σ (P–Pd) interactions.²⁹

An important implication of the NMR analysis of 3 is that for square-planar complexes that c[ont](#page-10-0)ain chelating phosphines with o -CF₃-Ph substituents a low-field H⁶ resonance (δ > ca. 9) and the absence of ${}^{4}J_{\text{PF}}$ coupling are characteristic of an endo-CF₃ group, while an H^6 resonance in the normal range and the presence of $^4J_{\rm PF}$ coupling are characteristic of an $\mathit{exo}\text{-}\mathrm{CF}_3$ group. Data for related compounds (Chart 1) that contain chelating phosphines with o -CF₃-Ph substituents are consistent with this trend. For example, in compound B , 30 one CF₃ group is *exo* and one is endo in the solid state. The ¹H NMR spectrum of **B** (CDCl₃) contains a resonance at δ 9.[58](#page-10-0) that integrates for 1H, and the $^{19}F{^1H}$ NMR spectrum comprises a singlet and a doublet. In compound C^{31} , the CF₃ group is *endo* in the solid state. The ¹H NMR spectrum of C (CD_2Cl_2) contains a

Chart 1. Pd Complexes That Contain Chelating Phosphines with o -CF₃-Ph Substituents

resonance at δ [9.30 that integrates for 1H, and t](http://pubs.acs.org/action/showImage?doi=10.1021/om500699t&iName=master.img-011.png&w=153&h=86)he $^{19}{\rm F} \{^1 {\rm H}\}$ NMR spectrum consists of a singlet. These results indicate that the conformers of the o -CF₃-Ph rings are similar in the solid state and solution for **B** and **C**. In compound D_1^{31} one CF_3 group is exo and one is endo in the solid state. However, the ¹H NMR spectrum of D (CDCl₃) contains a resonan[ce](#page-10-0) at δ 9.05 that integrates for 2H, and the $^{19}{\rm F}\{^1{\rm H}\}$ NMR spectrum consists of one singlet (6F), consistent with endo conformation for both o -CF₃-Ph rings. In this case, the conformation is different in the solid state and solution.

Dynamic Properties of 3. The ${}^{1}H$ and ${}^{19}F{}^{1}H$ } NMR spectra of 3 in $CDCl₂CDCl₂$ solution at 100 °C exhibit slight line broadening, which suggests that a slow dynamic process is operative. The 19 F EXSY spectrum at 100 °C (Figure 6)

Figure 6. ¹⁹F [EXSY spectrum of](http://pubs.acs.org/action/showImage?doi=10.1021/om500699t&iName=master.img-012.jpg&w=148&h=145) 3 in CDCl₂CDCl₂ solution at 100 °C.

confirms that the *exo* and *endo* o -CF₃-Ph groups undergo exchange. Rate constants for this $CF₃$ exchange were obtained from quantitative ¹⁹F EXSY experiments over the temperature range of 55 to 100 °C.³² The free energy of activation at 100 °C is $\Delta G^{\ddagger} = 20.2(4)$ kcal/mol.

Synthesis and So[lid](#page-10-0)-State Structure of $(PO-CF₃)$ PdMe-(pyridine) (4). The reaction of $\text{Na}[1]$ with (COD)PdMeCl in the presence of pyridine affords $(PO-CF_3)PdMe(pyridine)$ (4) in 85% isolated yield (Scheme 5). Slow diffusion of pentane into a CH_2Cl_2/b enzene solution of 4 results in crystallization of $4 \cdot CH_2Cl_2$, which was characteriz[ed](#page-3-0) by X-ray diffraction (Figure 7). The molecular structure of 4 is similar to that of 3. The $(PO-CF₃)$ Pd chelate ring adopts a boat conformation.²⁷ The [p](#page-5-0)hosphine adopts an $exo₂$ conformation, with the exo -CF₃ group $(CF^1F^2F^3)$ lying under one Pd axial site ([Pd1](#page-10-0)−F1 3.063(4) Å) and the *ortho* hydrogen of the *endo-o-CF*₃-Ph ring lying above the other Pd axial site (Pd1−H22 2.72 Å). However, the dihedral angle between the pyridine plane and the Pd square plane is smaller in 4 ($\theta_{\text{C-Pd-N-C}}$ 52.8(4)^o) than the corresponding dihedral angle in 3 (80.3(4) $^{\circ}$).

Figure 7. Molecular structure of $4 \cdot CH_2Cl_2$. Hydrogen atoms except H22 and the CH_2Cl_2 [solvent molecule are omitted. Selected b](http://pubs.acs.org/action/showImage?doi=10.1021/om500699t&iName=master.img-013.jpg&w=215&h=196)ond lengths (Å) and angles (deg): Pd1−P1 2.2174(14), Pd1−O1 2.126(3), Pd1−N1 2.082(4), Pd1−C1 2.059(5), Pd1−F1 3.063(4), Pd1−H22 2.72; P1−Pd1−O1 94.26(9), O1−Pd1−N1 85.61(14), N1−Pd1−C1 90.48(18), C1−Pd1−P1 89.73(14).

Speciation and Structure of 4 in Solution. The ${}^{1}H$ NMR spectrum of 4 in CD₂Cl₂ solution at -90 °C (Figure 8)

Figure 8. ¹H NMR spectrum of 4 in CD₂Cl₂ solution at −90 °C. Integr[ations are shown beneath the spectrum.](http://pubs.acs.org/action/showImage?doi=10.1021/om500699t&iName=master.img-014.jpg&w=196&h=137)

contains two $Pd-CH_3$ resonances in a 2:1 intensity ratio, indicating the presence of two isomers. The spectrum contains a doublet at δ 9.19 (J_{PH} = 16 Hz), which is characteristic for the ortho-H on an endo o-CF₃-Ph ring, based on the results for 3 and other d^8 square-planar complexes. The integrated intensity of this resonance is one-third that of the major $Pd-CH_3$ resonance, indicating that the major isomer has one endo o- CF_3 -Ph ring. The ${}^{31}P{^1H}$ NMR spectrum of 4 in CDCl₂F solution at −110 °C (Figure 9) also contains two resonances in a 2.4:1 intensity ratio, confirming the presence of two isomers. The ³¹P{¹H} resonance of the major isomer (δ 45.3) is a quartet (${}^{4}J_{PF}$ = 24 Hz); that is, the phosphorus couples with only one CF_3 group, and so one CF_3 group of this isomer must be exo. These results establish that the major isomer of 4 has an $exo₂$ conformation.

The $\rm{^{31}P}\rm\{^1H\}$ resonance of the minor isomer of 4 comprises a 10-line multiplet at δ −34.8, corresponding to a quartet of quartets (${}^{4}J_{\text{PF}}$ = 27, 12 Hz, simulated by gNMR). The fact that

Figure 9. ³¹P{¹H} NMR spectrum of 4 in CDCl₂F solution at -110 °[C. Expanded views of the observed and simulated resonance for th](http://pubs.acs.org/action/showImage?doi=10.1021/om500699t&iName=master.img-015.jpg&w=232&h=153)e $e x o_3$ isomer (δ −34.8) are shown in the inset. The asterisk indicates an impurity resonance. Integrations are shown beneath the spectrum.

9.43

phosphorus couples to both CF_3 groups indicates that both CF_3 groups are *exo*, and therefore the minor isomer of 4 has an $e^{i\omega}$ conformation.³³

Dynamic Properties of 4. As the temperature is raised from -90 °[C,](#page-10-0) the ³¹P{¹H} resonances of e_{x0_2} -4 and e_{x0_3} -4 broaden and coalesce, ultimately forming a single broad resonance at δ 40.7 at 20 °C (CD₂Cl₂, Figure 10). These results indicate that the exo_2 -4 and exo_3 -4 isomers interconvert on the NMR time scale. The free energy of activation of this process, ΔG^{\ddagger} = 9.9(5) kcal/mol at −40 °C, was determined from the coalescence of the two resonances.³⁴ The $e x o_2$ -4/ $e x o_3$ -4 ratio decreases from 2:1 at −90 °C to ca. 1:1 at 20 °C.

Figure 10. [Variable-temperature](http://pubs.acs.org/action/showImage?doi=10.1021/om500699t&iName=master.img-016.jpg&w=189&h=289) $^{31}{\rm P} \{^1{\rm H}\}$ NMR spectra of 4 in ${\rm CD_2Cl_2}$ solution.

8

Figure 11. Variable-temperature ${}^{1}H$ NMR spectra of 4 in CD_2Cl_2 solution. The aromatic and Pd-CH₃ regions are shown. Red: $exo₂$ -4, blue: $e x o_3$ -4, black: rapidly exchanging $e x o_2$ -4/ $e x o_3$ -4 mixture. \bullet : o- CF_3 -Ph-H⁶, **A**: *o*-py, \blacklozenge : Pd-CH₃.

of the H⁶ resonances of the o -CF₃-Ph rings (9.7(5) kcal/mol), the ortho-H resonances of the pyridine ligand (9.8(5) kcal/ mol), and the Pd-CH₃ resonances $(9.7(5)$ kcal/mol) all agree well with the value determined from the ${}^{31}P\{^1H\}$ spectrum.³⁴

The ¹⁹F{¹H} NMR spectrum of 4 in CD₂Cl₂ at −90 °C (Figure 12) contains four resonances, indicating that the t[wo](#page-10-0) $CF₃$ groups within each isomer are inequivalent (trivial for $exo₂$, not for exo_3). The resonances at δ –51.6 (d, ⁴J_{PF} = 23 Hz) and δ -56.9 (s, br) are assigned to the exo-CF₃ and endo-CF₃ groups, respectively, of the major $exo₂$ -4 isomer, based on the relative intensities and similarities of these chemical shifts to those of the corresponding resonances of 3. The resonances at δ –51.9 (d, ⁴J_{PF} = 27 Hz) and δ –53.2 (s, br) are assigned to the exo_3 -4 isomer.³⁵

As the temperature is raised from −90 °C to 20 °C, the δ 51.6 r[e](#page-10-0)sonance of exo_2 -4 and the δ 53.2 resonance of exo_3 -4 broaden and coalesce, and the δ 56.9 resonance of $e x o_2$ -4 and the δ 51.9 resonance of exo₃-4 broaden and coalesce (Figure 12). The ΔG^{\ddagger} values (9.9(5), 9.8(5) kcal/mol) determined from these two coalescence phenomena agree well with the values derived from the variable-temperature ${}^{31}P{^1H}$ and ${}^{1}H$ NMR spectra noted above.³⁴ These results show that the dynamic process that permutes exo_2-4 and exo_3-4 results in exchange of a given o -CF₃-[Ph](#page-10-0) group of one isomer with a specific o -CF₃-Ph group of the other isomer and are consistent with the sole operation of the A_aR process in this temperature range (Scheme 6).

The ¹⁹F{¹H} NMR spectra of the rapidly exchanging exo_2 -4/ $e x o_3$ -4 mixture i[n](#page-7-0) CD₂Cl₂ solution at 20 °C (Figure 12) and in

Figure 12. Variable-temperature 19 F{¹H} NMR spectra of 4 in CD₂Cl₂ solution. Red: exo_2 -4, blue: exo_3 -4[, black: rapidly exchanging](http://pubs.acs.org/action/showImage?doi=10.1021/om500699t&iName=master.img-018.jpg&w=188&h=279) exo_2 -4/ exo₃-4 mixture. \bullet : pseudoaxial o-CF₃-Ph, \blacktriangle : pseudoequatorial o-CF₃-Ph.

 $CDCl₂CDCl₂$ solution over the temperature range of 25 to 100 °C (Figure S13) contain two resonances of equal intensity. Minor line broadening of these resonances is observed above ca. 70 °[C, indica](#page-9-0)tive of slow exchange of the CF_3 groups. The $CF₃$ exchange was confirmed by the ¹⁹F EXSY spectrum at 100 $^{\circ}$ C (Figure 13). This CF₃ exchange requires chelate ring inversion (RI). The RI barrier was determined to be ΔG^{\ddagger} (100 $^{\circ}$ C) = 21(1) [kca](#page-7-0)l/mol by quantitative ¹⁹F EXSY experiments³² over the temperature range 55−100 °C.³⁶

Proposed Mechanism for the Dynamic Processes of [4.](#page-10-0) These dynamic NMR results are most [eas](#page-10-0)ily explained by the simple exchange mechanism shown in Scheme 6. The lowbarrier process (ΔG^{\ddagger} = 9.9(5) kcal/mol) that interconverts $exo₂$ -4 and $exo₃$ -4 without exchanging the pse[ud](#page-7-0)oaxial and pseudoequatorial o -CF₃-Ph rings corresponds to rotation around the P−C bond of the pseudoaxial o-CF3-Ph rings. The higher barrier process ($\Delta G^{\ddagger} = 21(1)$ kcal/mol), which does exchange the pseudoaxial and pseudoequatorial o -CF₃-Ph rings, corresponds to inversion of the $(PO-CF₃)Pd$ chelate ring.

Due to the steric congestion around phosphorus, the $e x o₂$ -4/ $exo₃$ -4 exchange probably involves some changes in the (PO- $CF₃$)Pd chelate ring conformation and the position of the pseudoequatorial o -CF₃-Ph ring, in addition to rotation of the pseudoaxial o -CF₃-Ph ring (A_aR). The change in the ${}^{4}J_{\rm PF}$ value for the pseudoequatorial o -CF₃-Ph group (23 Hz in exo_2 -4, 12 Hz in $exo_3-4)$ likely reflects these additional conformational changes. In fact, these nonzero ${}^{4}J_{\rm PF}$ values do not distinguish whether this CF_3 group is fixed at an *exo* position or undergoes rapid exchange between *exo* and *endo* positions (A_eR) in Scheme 1) in exo_2 -4 and exo_3 -4.

Scheme 6. Proposed Mechanism for the Dynamic Processes of 4

Figure 13. ¹⁹F EXSY spectrum of 4 in $CDCl₂CDCl₂$ solution at 100 $^{\circ}C.$

■ CONCLUSION

The *exo* and *endo* conformations of the o -CF₃-Ph rings in (PO- $CF_3)$ PdMe(L) and related compounds can be identified by NMR. In the *exo* conformation, in which the CF_3 group points toward Pd, through-space J_{PF} coupling is observed. In the endo conformation, in which the CF_3 group points away from Pd and the o-H is positioned in the deshielding region near an axial site of the Pd square plane, J_{PF} coupling is not observed and the o -H ¹H NMR resonance appears at low-field ($\delta > 9$). These trends were exploited to study the solution conformation and dynamic properties of $(PO-CF_3)PdMe(py)$ (4). Complex 4 exists as a 2:1 mixture of $e x o_2$ and $e x o_3$ isomers in CD₂Cl₂ solution at −90 °C. In exo_2 -4, one CF₃ group is *exo* and exhibits through-space 4 *J*_{PF} coupling, while the other CF₃ group is *endo* and does not exhibit through-space ${}^4J_{\rm PF}$ coupling. In *exo*₃-4, both CF₃ groups are *exo* and exhibit through-space ${}^{4}J_{\text{PF}}$ couplings. Complex 4 undergoes two dynamic processes: rotation of the pseudoaxial o -CF₃-Ph ring (A_aR), which interconverts exo₂-4 and exo₃-4 $(\Delta G^{\ddagger} = 9.9(5)$ kcal/mol), and chelate ring inversion (RI), which permutes the pseudoaxial and pseudoequatorial o -CF₃-Ph rings $(\Delta G^{\ddagger} = 21(1) \text{ kcal/mol}).$

EXPERIMENTAL SECTION

General Procedures. All experiments were performed using glovebox or Schlenk techniques under a N_2 atmosphere unless otherwise noted. N_2 was purified by passage through activated [molecular sieves and Q-5 oxygen scaven](http://pubs.acs.org/action/showImage?doi=10.1021/om500699t&iName=master.img-019.jpg&w=299&h=176)ger. CD_2Cl_2 and $CDCl_3$ were distilled from P_2O_5 . CDCl₂F was synthesized by a literature procedure and distilled from P_2O_5 .³⁷ Hexanes, pentane, and toluene were purified by passage through activated alumina and BASF R3-11 oxygen scavenger. Diethyl eth[er,](#page-10-0) tetrahydrofuran (THF), and CH_2Cl_2 were purified by passage through activated alumina. $\{PdMe(2,6\text{-}lutidine)(\mu-$ Cl) $\}2$ was synthesized by a literature procedure.³⁸ p-Toluenesulfonic acid was dehydrated from its monohydrate before use.

NMR spectra were recorded in Teflon-valv[ed](#page-10-0) tubes at ambient probe temperature unless otherwise indicated. ${}^{1}H$ and ${}^{13}C$ chemical shifts are reported relative to SiMe_4 and were determined by reference to the residual ¹H and ¹³C solvent resonances. ¹⁹F and ³¹P NMR spectra were referenced externally to neat CFCl₃ and 85% $H_3PO_4/$ $D₂O$ (δ 0) respectively. Coupling constants are reported in hertz (Hz). The numbering scheme for NMR assignments is given in Scheme 7.

Scheme 7. Numbering Scheme Used for NMR Assignments

Electrospray mass [spectra \(ESI-MS\) were](http://pubs.acs.org/action/showImage?doi=10.1021/om500699t&iName=master.img-021.png&w=84&h=42) recorded on freshly prepared samples (ca. 1 mg/mL in CH_2Cl_2 or acetone). In all cases where assignments are given, the observed isotope patterns closely matched calculated isotope patterns. The listed m/z value corresponds to the most intense peak in the isotope pattern.

Isobutyl 2-{(o-CF₃-Ph)₂P}-4-Me-benzenesulfonate. "BuLi (0.39 mL, 2.5 M in hexanes, 0.98 mmol) was added slowly to a solution of ⁱ Bu p-toluenesulfonate (0.227 g, 0.995 mmol) in THF (3 mL) at −78 °C. The mixture was stirred at −78 °C for 3 h. The mixture was added to a solution of $(o-CF_3-Ph)_2$ PCl $(0.351 \text{ g}, 0.984 \text{ mmol})$ in diethyl ether (21 mL) at −78 °C. The mixture was stirred at −78 °C for 3 h and was allowed to warm to 25 °C. The mixture was stirred at 25 °C for 12 h. The volatiles were removed under vacuum. CH_2Cl_2 was added to afford a white suspension. The mixture was filtered through Celite and concentrated under vacuum to afford a yellow solid, which was purified by flash chromatography (eluant: 15/85 ethyl acetate/hexanes) to yield isobutyl $2-(\left(o-CF_3-Ph\right)_2P$ }-4-Me-benzenesulfonate (0.329 g, 0.600 mmol, 61% based on $(o-CF_3-Ph)$ ₂PCl) as a white solid. ¹H NMR (500 MHz, CDCl₃): δ 8.06 (dd, J_{HH} = 8, J_{PH} = 4, 1H, H³–ArSO₃), 7.80–7.76 (m, 2H, H³–ArCF₃), 7.52–7.47 (m, 2H, H^4 –ArCF₃), 7.46–7.40 (m₁ 2H, H⁵–ArCF₃), 7.33 (d, J_{HH} = 8, 1H, H^4 –ArSO₃), 6.94 (s, 2H, H⁶–ArCF₃), 6.66 (s, 1H, H⁶–ArSO₃), 4.07– 4.01 (m, 2H, $-OCHH_2$ –), 2.26 (s, 3H, ArCH₃), 2.08–1.97 (m, 1H, $-CH[CH_3]_2$), 0.96 (d, $J_{HH} = 7$, 6H, $-CH[CH_3]_2$). ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 144.1 (d, $J_{PC} = 1$, C⁵ $-ArSO_3$), 138.1 (d, $J_{PC} =$

27, C²–ArSO₃), 137.0 (s, C⁶–ArSO₃), 136.7 (dd, J_{PC} = 31, J_{FC} = 2, C^1 –ArCF₃), 136.6 (s, C⁶–ArCF₃), 135.8 (s, C⁶–ArCF₃), 135.6 (d, J_{PC} $= 28, C¹ - ArCF₃$), 135.5 (d, J_{PC} = 33, C¹ - ArSO₃), 134.4 (qd, J_{FC} = 30, $J_{\text{PC}} = 27, \text{ C}^2-\text{ArCF}_3$), 133.8 (qd, $J_{\text{FC}} = 31, J_{\text{PC}} = 27, \text{ C}^2-\text{ArCF}_3$), 131.9 (s, C⁵–ArCF₃), 131.7 (s, C⁵–ArCF₃), 131.3 (d, J_{PC} = 4, C³–ArSO₃), 130.2 (s, C⁴ $-ArSO_3$), 129.5 (s, C⁴ $-ArCF_3$), 129.3 (s, C⁴ $-ArCF_3$), 127.0 (m, C³-ArCF₃), 124.3 (qd, J_{FC} = 275, J_{PC} = 2, ArCF₃), 77.0 (−OCH₂−), 28.3 (−CH[CH₃]₂), 21.7 (ArCH₃), 18.7 (−CH[CH₃]₂).
¹⁹F{¹H} NMR (471 MHz, CDCl₃): δ −57.0 (d, J_{PF} = 56), −57.3 (d, J_{PF} = 54). ³¹P{¹H} NMR (202 MHz, CDCl₃): δ –13.7 (septet, J_{PF} = 55). ESI-MS (MeOH/CH₂Cl₂, 1:1 by volume, positive ion scan, m/z): 549.0 (MH⁺). Anal. Calcd for $C_{25}H_{23}F_6O_3PS$: C, 54.75; H, 4.23. Found: C, 54.72; H, 4.22.

 $(o-CF_3-Ph)_2P(=O)P(o-CF_3-Ph)_2$ (2). In the flash chromatography described above, after the fractions containing isobutyl $2-\{(o-CF_3\})$ Ph)₂P}-4-Me-benzenesulfonate were collected, the eluant was switched to 30/70 ethyl acetate/hexanes. Fractions containing side products were combined, and volatiles were removed under vacuum to afford a pale yellow solid (0.138 g) as the crude side product. NMR spectra showed that 2 is the major species. Crystals of 2 suitable for Xray diffraction were obtained by slow diffusion of pentane into a diethyl ether solution of the crude side product. ¹H NMR (500 MHz, acetone- d_6): δ 8.68–8.67 (m, 2H), 7.88–7.81 (m, 4H), 7.76–7.73 (m, 4H), 7.70–7.65 (m, 4H), 7.54 (t, J_{HH} = 7.8 Hz, 2H). ¹⁹F{¹H} NMR (471 MHz, acetone- d_6): δ −55.8 (d, J_{PF} = 17, 6F), −56.2 (dd, J_{PF} = 50, 5, 6F). ${}^{31}P{^1H}$ NMR (202 MHz, acetone- d_6): δ 40.3 (doublet of septets, ${}^{1}J_{\text{PP}} = 243$, $J_{\text{PF}} = 5$), -33.0 to -35.7 (m, ${}^{1}J_{\text{PP}} = 243$, $J_{\text{PF}} = 50$, 17). ESI-MS (MeOH/CH₂Cl₂, 1:1 by volume, positive ion scan, m/z): 659.0 (MH⁺).

Na[PO-CF₃] (Na[1]). Route 1. A flask was charged with isobutyl 2- $\{(\rho - CF_3 - Ph)_2P\}-4-Me-benzenesulfonate (0.38 g, 0.69 mmol), Nal$ $(0.317 \text{ g}, 2.11 \text{ mmol})$, and CH₃CN (10 mL, purged with N₂ for 20 min before use). The mixture was refluxed for 15 h. The mixture was concentrated under vacuum to afford a white solid, which was washed with H_2O and CHCl₃ to yield Na[1] (0.24 g, 0.47 mmol, 68%) as a white fluffy solid. Crystals of $[Na(18-crown-6)(H₂O)][1]$ suitable for X-ray diffraction were obtained by slow diffusion of pentane into a wet CH_2Cl_2 solution of Na^[1] in the presence of 18-crown-6. ¹H NMR $(500 \text{ MHz}, \text{acetone-}d_6)$: δ 7.99 (dd, $J_{\text{HH}} = 8$, $J_{\text{PH}} = 4$, 1H, H^3 –ArSO₃), 7.81 (s, 1H, H³–ArCF₃(A)), 7.71 (s, 1H, H³–ArCF₃(B)), 7.57–7.55 $(m, 1H, H^4-ArCF₃(A)), 7.51-7.50 (m, 2H, H^5-ArCF₃(A), H^3 ArCF₃(B)$), 7.45−7.44 (m, 1H, H⁵−ArCF₃(B)), 7.17 (d, J_{HH} = 8, 1H, H^4 –ArSO₃), 7.05 (s, 1H, H^6 –ArCF₃(B)), 6.93 (d, J_{HH} = 6, 1H, H⁶– $ArCF₃(A)$), 6.52 (s, 1H, $H⁶-ArSO₃$), 2.11 (s, 3H, ArCH₃). ¹³C{¹H} NMR (126 MHz, acetone- d_6): δ 148.8 (d, J_{PC} = 26, C²–ArSO₃), 139.8 (d, $J_{PC} = 1$, C⁵ $-ArSO_3$), 139.5 (s, C¹ $-ArCF_3$), 139.0 (d, $J_{PC} = 30$, C¹ $-$ ArCF₃), 137.7 (s, C⁶-ArCF₃(A)), 136.7 (s, C⁶-ArCF₃(B)), 135.9 (s, C^6 – ArSO₃), 134.8 (dq, J_{PC} = 31, J_{FC} = 28, C^2 – ArCF₃), 133.4 (d, J_{PC} = 27, C¹ $-ArSO_3$), 133.2–132.7 (m, C² $-ArCF_3$), 132.6 (s, C⁵ $-ArCF_3$), 132.4 (s, C⁵–ArCF₃), 130.1 (s, C⁴–ArSO₃), 129.8 (s, C⁴–ArCF₃(A)), 129.6 (d, $J_{PC} = 4$, $C^3 - ArSO_3$), 129.3 (s, $C^4 - ArCF_3(B)$), 127.2 (dq, J_{PC} $= 6$, $J_{FC} = 5$, $C^3 - ArcF_3$), 125.6 (q, $J_{FC} = 275$, ArCF₃), 125.4 (q, $J_{FC} =$ 275, ArCF₃), 21.18 (s, ArCH₃). ¹⁹F{¹H} NMR (471 MHz, acetoned₆): δ –55.9 (d, J_{PF} = 61), –56.4 (d, J_{PF} = 54). ³¹P{¹H} NMR (202 MHz, acetone- d_6): δ -14.1 (septet, J_{PF} = 57). ESI-MS (acetonitrile, positive ion scan, m/z): 493.0 ($\rm \dot{M}-\rm Na^+ + 2H^+$). Multiple elemental analyses on spectroscopically pure samples of this compound did not yield satisfactory results.

Na[1]. Route 2. "BuLi (7.0 mL, 2.9 M in hexanes, 20 mmol) was added slowly to a solution of p-toluenesulfonic acid (1.64 g, 9.52 mmol) in THF (25 mL) at −78 °C. The mixture was stirred at −78 °C for 4.5 h. The mixture was added to a solution of $(o-CF_3-Ph)_2$ PCl (3.39 g, 9.51 mmol) in diethyl ether (25 mL) at −78 °C. The mixture was stirred at −78 °C for 3 h and was allowed to warm to 25 °C. The mixture was stirred at 25 °C for 12 h. The volatiles were removed under vacuum. CH_2Cl_2 (20 mL) and H_2O (20 mL) were added. The aqueous phase was acidified to $pH = 2$ by adding aqueous HCl solution and then separated. Aqueous NaCl solution was added to the aqueous phase to afford white precipitates. The mixture was filtered to yield Na $[1]$ (3.18 g, 6.18 mmol, 65%) as a white fluffy solid.

 $(PO-CF₃)Pd(Me)(2,6-lutidine)$ (3). A flask was charged with Na[1] (0.240 g, 0.467 mmol), $\{PdMe(2,6-lutidine)(\mu\text{-}Cl)\}\$ ₂ (0.121 g, 0.229) mmol), and CH_2Cl_2 (7 mL). The mixture was stirred at 25 °C for 6 h. The mixture was filtered. CH_2Cl_2 (8 mL) was used to wash the precipitate and combined with the filtrate. The filtrate was concentrated under vacuum to afford a pale yellow solid, which was recrystallized from $\mathrm{CH_2Cl_2/}$ pentane to yield 3 (0.228 g, 0.317 mmol, 69% based on $\{PdMe(2,6-lutidine)(\mu-Cl)\}\)$ as a pale yellow solid. Crystals of 3 suitable for X-ray diffraction were obtained by slow diffusion of pentane into a CH_2Cl_2 solution of 3. ¹H NMR (500 MHz, CD₂Cl₂): δ 9.12 (dd, J_{PH} = 18, J_{HH} = 7, 1H, H⁶–ArCF₃(A)), 7.95– 7.91 (m, 2H, H^3 –ArCF₃(B), H^3 –ArSO₃), 7.87–7.85 (m, 1H, H^3 – ArCF₃(A)), 7.81 (t, J_{HH} = 7, 1H, H⁵-ArCF₃(A)), 7.76 (t, J_{HH} = 7, 1H, H^4 –ArCF₃(A)), 7.70 (t, J_{HH} = 7, 1H, H⁴–ArCF₃(B)), 7.64 (t, J_{HH} = 8, 1H, H⁴-lutidine), 7.49 (t, J_{HH} = 8, 1H, H⁵-ArCF₃(B)), 7.38 (d, J_{HH} = 8, 1H, H⁴ $-ArSO_3$), 7.22 (d, J_{HH} = 8, 1H, H³(A)–lutidine), 7.16 (d, J_{HH} = 8, 1H, H³(B)–lutidine), 7.10 (d, J_{PH} = 12, 1H, H⁶–ArSO₃), 6.99 (dd, J_{PH} = 12, J_{HH} = 8, 1H, H^6 – ArCF₃(B)), 3.20 (s, 3H, CH₃(A)– lutidine), 2.91 (s, 3H, CH₃(B)−lutidine), 2.30 (s, 3H, ArCH₃), 0.11 (d, $J_{\text{PH}} = 3$, 3H, PdCH₃). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂): δ 159.32 (d, $J_{PC} = 1$, C²-lutidine), 159.25 (d, $J_{PC} = 1$, C²-lutidine), 146.3 (d, $J_{PC} = 16$, C^2 – ArSO₃), 143.3 (d, $J_{PC} = 28$, C^6 – ArCF₃(A)), 139.7 (d, J_{PC} = 7, C⁵-ArSO₃), 139.0 (s, C⁴-lutidine), 136.5 (d, J_{PC} = 5, C^6 -ArCF₃(B)), 135.8 (s, C^6 -ArSO₃), 133.7–133.2 (m, C^2 -ArCF₃), 132.9–132.6 (m, C²–ArCF₃), 132.3 (d, J_{PC} = 3, C⁴–ArSO₃), 132.2 (d, $J_{PC} = 2$, C^4 -ArCF₃(A)), 132.1 (d, $J_{PC} = 17$, C^5 -ArCF₃(A)), 131.9 (d, $J_{PC} = 7$, C^5 – ArCF₃(B)), 131.8 (d, $J_{PC} = 2$, C^4 – ArCF₃(B)), 130.0−129.8 (m, C³−ArCF₃(B)), 129.4 (d, J_{PC} = 44, C¹−ArCF₃(A)), 128.9−128.8 (m, C^3 -ArCF₃(A)), 128.4 (d, J_{PC} = 9, C^3 -ArSO₃), 126.8 (d, J_{PC} = 40, C¹–ArCF₃(B)), 126.5 (d, J_{PC} = 45, C¹–ArSO₃), 124.9 (q, $J_{\text{FC}} = 276$, ArCF₃), 123.7 (q, $J_{\text{FC}} = 274$, ArCF₃), 123.2 (d, $J_{\text{PC}} = 3$, $C^3(A)$ –lutidine), 123.1 (d, J_{PC} = 3, $C^3(B)$ –lutidine), 27.0 (s, $CH₃(A)$ -lutidine), 26.3 (s, $CH₃(B)$ -lutidine), 21.2 (s, ArCH₃), -4.4 (s, PdCH₃). ¹⁹F{¹H} NMR (471 MHz, CD₂Cl₂): δ −52.3 (d, $J_{\text{PF}} = 22$, ArCF₃(B)), -55.7 (s, ArCF₃(A)). ³¹P{¹H} NMR (202 MHz, CD₂Cl₂): δ 41.6 (q, J_{PF} = 21). ESI-MS (MeOH/H₂O, 1:1 by volume, positive ion scan, m/z): 720.0 (MH⁺). Anal. Calcd for C29H26F6NO3PPdS: C, 48.38; H, 3.64; N, 1.95. Found: C, 48.10; H, 3.61; N, 1.62.

 $(PO-CF₃)Pd(Me)(pyridine)$ (4). A flask was charged with Na[1] (0.132 g, 0.257 mmol), (COD)PdMeCl (0.071 g, 0.27 mmol), pyridine (22 μ L, 0.27 mmol), and CH₂Cl₂ (23 mL). The mixture was stirred at 25 °C for 2 h. The mixture was filtered and concentrated under vacuum to afford a pale yellow solid, which was recrystallized from CH_2Cl_2 /pentane to yield 4 (0.152 g, 0.220 mmol, 85% based on $\text{Na}[1]$) as a pale yellow solid. Crystals of $4 \cdot \text{CH}_2\text{Cl}_2$ suitable for X-ray diffraction were obtained by slow diffusion of pentane into a CH_2Cl_2 / benzene solution of 4. ¹H NMR (500 MHz, CD_2Cl_2): δ 8.73 (d, J_{HH} = 5, 2H, H²-pyridine), 8.16 (dd, J_{PH} = 15, J_{HH} = 7, 1H, H⁶-ArCF₃(A)), 8.02–7.97 (m, 2H, H³–ArCF₃(B), H³–ArSO₃), 7.89–7.86 (m, 2H, H^3 -ArCF₃(A), H⁴-pyridine), 7.77–7.67 (m, 3H, H⁴-ArCF₃(A), H^4 -ArCF₃(B), H⁵-ArCF₃(A)), 7.52-7.45 (m, 3H, H⁵-ArCF₃(A), H³-pyridine), 7.43 (d, J_{HH} = 8, 1H, H⁴-ArSO₃), 7.03 (dd, J_{PH} = 12, J_{HH} = 8, 1H, H⁶-ArCF₃(B)), 6.92 (d, J_{PH} = 12, 1H, H⁶-ArSO₃), 2.27 (s, 3H, ArCH₃), 0.45 (s, 3H, PdCH₃). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂): δ 150.8 (s, C²-pyridine), 146.9 (d, J_{PC} = 15, C²-ArSO₃), 140.5 (d, $J_{PC} = 19$, $C^6 - ArCF_3(A)$), 140.2 (d, $J_{PC} = 7$, $C^5 - ArSO_3$), 138.9 (s, C⁴-pyridine), 136.4 (d, J_{PC} = 4, C⁶-ArCF₃(B)), 135.2 (s, C^6 – ArSO₃), 134.0 (qd, J_{FC} = 31, J_{PC} = 10, C^2 – ArCF₃), 133.2 (qd, J_{FC} $= 32, J_{PC} = 3, C^2 - ArCF_3$, 132.6 (d, J_{PC} = 2, C⁴ - ArSO₃), 132.5 - 132.3 (m, C⁵–ArCF₃), 132.2 (d, J_{PC} = 2, C⁴–ArCF₃), 131.9 (d, J_{PC} = 2, C⁴– ArCF₃), 129.4 (dq, J_{PC} = 7, J_{FC} = 5, C³–ArCF₃), 129.3–129.2 (m, C³– ArCF₃), 129.2 (d, J_{PC} = 9, C³–ArSO₃), 128.0 (d, J_{PC} = 43, C¹–ArCF₃/ C^1 –ArSO₃), 127.7 (d, J_{PC} = 43, C¹–ArCF₃/C¹–ArSO₃), 126.4 (d, J_{PC} = 47, C¹−ArCF₃), 125.7 (s, C³−pyridine), 124.7 (qd, J_{FC} = 276, J_{PC} = 1, ArCF₃), 124.2 (qd, J_{FC} = 276, J_{PC} = 1, ArCF₃), 21.2 (s, ArCH₃), 1.7 (s, PdCH₃). ¹⁹F{¹H} NMR (471 MHz, CD₂Cl₂): δ –52.7 (d, J_{PF} = 18, ArCF₃(B)), -54.1 (d, J_{PF} = 8, ArCF₃(A)). ³¹P{¹H} NMR (202 MHz, CD_2Cl_2): δ 40.7 (br). ESI-MS (MeOH/CH₂Cl₂, 1:1 by volume, positive ion scan, m/z): 691.9 (MH⁺). Multiple elemental analyses on

spectroscopically pure samples of this compound did not yield satisfactory results.

X-ray Crystallography. Full details are provided in the Supporting Information. Data were collected on a Bruker Smart Apex diffractometer using Mo K α radiation (0.710 73 Å). Direct methods were used to locate many atoms from the E-map. Repeated difference Fourier maps enabled location of all expected non-hydrogen atoms. Following anisotropic refinement of all non-H atoms, ideal H atom positions were calculated. Final refinement was anisotropic for all non-H atoms and isotropic-riding for H atoms. ORTEP diagrams are drawn with 50% probability ellipsoids.

■ ASSOCIATED CONTENT

S Supporting Information

Crystal structure report for compounds [Na(18-crown-6)- $(H_2O)[1]$, 2, 3, and 4·CH₂Cl₂; synthesis of compounds; generation and structure of 2; additional NMR spectra and analysis of Na[1] and 4; details of ¹⁹F EXSY analysis of 3 and 4; NMR spectra of compounds and crystallographic data in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

■ [AUTHOR INFOR](http://pubs.acs.org)MATION

Corresponding Author

*E-mail: rfjordan@uchicago.edu.

Notes

The auth[ors declare no competi](mailto:rfjordan@uchicago.edu)ng financial interest.

■ ACKNOWLEDGMENTS

We thank Antoni Jurkiewicz, Ian Steele, and Jin Qin for assistance with NMR spectroscopy, X-ray crystallography, and mass spectrometry, respectively. This work was supported by the National Science Foundation (grants CHE-0911180 and CHE-1048528).

■ REFERENCES

(1) (a) Berkefeld, A.; Mecking, S. Angew. Chem., Int. Ed. 2008, 47, 2538. (b) Nakamura, A.; Ito, S.; Nozaki, K. Chem. Rev. 2009, 109, 5215. (c) Nakamura, A.; Anselment, T. M. J.; Claverie, J.; Goodall, B.; Jordan, R. F.; Mecking, S.; Rieger, B.; Sen, A.; van Leeuwen, P. W. N. M.; Nozaki, K. Acc. Chem. Res. 2013, 46, 1438.

(2) (a) Drent, E.; van Dijk, R.; van Ginkel, R.; van Oort, B.; Pugh, R. I. Chem. Commun. 2002, 744. (b) Drent, E.; van Dijk, R.; van Ginkel, R.; van Oort, B.; Pugh, R. I. Chem. Commun. 2002, 964.

(3) (a) Skupov, K. M.; Marella, P. R.; Simard, M.; Yap, G. P. A.; Allen, N.; Conner, D.; Goodall, B. L.; Claverie, J. P. Macromol. Rapid Commun. 2007, 28, 2033. (b) Skupov, K. M.; Piche, L.; Claverie, J. P. Macromolecules 2008, 41, 2309. (c) Piche, L.; Daigle, J.-C.; Poli, R.; Claverie, J. P. Eur. J. Inorg. Chem. 2010, 2010, 4595. (d) Daigle, J.-C.; Piche, L.; Claverie, J. P. Macromolecules 2011, 44, 1760. (e) Piche, L.; Daigle, J.-C.; Rehse, G.; Claverie, J. P. Chem.-Eur. J. 2012, 18, 3277. (f) Daigle, J.-C.; Piche, L.; Arnold, A.; Claverie, J. P. ACS Macro Lett. 2012, 1, 343.

(4) (a) Luo, S.; Vela, J.; Lief, G. R.; Jordan, R. F. J. Am. Chem. Soc. 2007, 129, 8946. (b) Weng, W.; Shen, Z.; Jordan, R. F. *J. Am. Chem.* Soc. 2007, 129, 15450. (c) Vela, J.; Lief, G. R.; Shen, Z.; Jordan, R. F. Organometallics 2007, 26, 6624. (d) Shen, Z.; Jordan, R. F. J. Am. Chem. Soc. 2009, 132, 52. (e) Shen, Z.; Jordan, R. F. Macromolecules 2010, 43, 8706. (f) Conley, M. P.; Jordan, R. F. Angew. Chem., Int. Ed. 2011, 50, 3744. (g) Cai, Z.; Shen, Z.; Zhou, X.; Jordan, R. F. ACS Catal. 2012, 2, 1187.

(5) (a) Guironnet, D.; Roesle, P.; Rü nzi, T.; Göttker-Schnetmann, I.; Mecking, S. J. *Am. Chem. Soc.* **2009**, 131, 422. (b) Rünzi, T.; Fröhlich, D.; Mecking, S. J. Am. Chem. Soc. 2010, 132, 17690. (c) Bouilhac, C. C.; Rünzi, T.; Mecking, <u>S</u>. *Macromolecules* 2010, 43, 3589. (d) Guironnet, D.; Caporaso, L.; Neuwald, B.; Göttker-Schnetmann, I.; Cavallo, L.; Mecking, S. J. Am. Chem. Soc. 2010, 132, 4418. (e) Friedberger, T.; Wucher, P.; Mecking, S. J. Am. Chem. Soc. 2011, 134, 1010. (f) Leicht, H.; Göttker-Schnetmann, I.; Mecking, S. Angew. Chem., Int. Ed. 2013, 52, 3963.

(6) (a) Kochi, T.; Noda, S.; Yoshimura, K.; Nozaki, K. J. Am. Chem. Soc. 2007, 129, 8948. (b) Ito, S.; Munakata, K.; Nakamura, A.; Nozaki, K. *J. Am. Chem. Soc.* 2009, 131, 14606. (c) Noda, S.; Nakamura, A.; Kochi, T.; Chung, L. W.; Morokuma, K.; Nozaki, K. *J. Am. Chem. Soc.* 2009, 131, 14088. (d) Kanazawa, M.; Ito, S.; Nozaki, K. Organometallics 2011, 30, 6049.

(7) (a) Anselment, T. M. J.; Vagin, S. I.; Rieger, B. Dalton Trans. 2008, 4537. (b) Anselment, T. M.; Anderson, C. E.; Rieger, B.; Boeddinghaus, M. B.; Fassler, T. F. Dalton Trans. 2011, 40, 8304. (c) Anselment, T. M. J.; Wichmann, C.; Anderson, C. E.; Herdtweck, E.; Rieger, B. Organometallics 2011, 30, 6602.

(8) (a) Borkar, S.; Newsham, D. K.; Sen, A. Organometallics 2008, 27, 3331. (b) Ravasio, A.; Boggioni, L.; Tritto, I. Macromolecules 2011, 44, 4180.

(9) (a) Hearley, A. K.; Nowack, R. J.; Rieger, B. Organometallics 2005, 24, 2755. (b) Haras, A.; Michalak, A.; Rieger, B.; Ziegler, T. Organometallics 2006, 25, 946. (c) Bettucci, L.; Bianchini, C.; Claver, C.; Suarez, E. J. G.; Ruiz, A.; Meli, A.; Oberhauser, W. Dalton Trans. 2007, 5590. (d) Newsham, D. K.; Borkar, S.; Sen, A.; Conner, D. M.; Goodall, B. L. Organometallics 2007, 26, 3636. (e) Luo, R.; Newsham, D. K.; Sen, A. Organometallics 2009, 28, 6994. (f) Chen, C.; Anselment, T. M. J.; Fröhlich, R.; Rieger, B.; Kehr, G.; <u>Erker</u>, G. Organometallics 2011, 30, 5248.

(10) (a) Kochi, T.; Nakamura, A.; Ida, H.; Nozaki, K. J. Am. Chem. Soc. 2007, 129, 7770. (b) Nakamura, A.; Munakata, K.; Ito, S.; Kochi, T.; Chung, L. W.; Morokuma, K.; Nozaki, K. J. Am. Chem. Soc. 2011, 133, 6761. (c) Nakamura, A.; Kageyama, T.; Goto, H.; Carrow, B. P.; Ito, S.; Nozaki, K. J. Am. Chem. Soc. 2012, 134, 12366.

(11) Howell, J. A. S.; Palin, M. G.; Yates, P. C.; McArdle, P.; Cunningham, D.; Goldschmidt, Z.; Gottlieb, H. E.; Hezroni-Langerman, D. J. Chem. Soc., Perkin Trans. 2 1992, 1769.

(12) These "(PO)PdMe" species are probably solvent adducts or, less likely, sulfonate-bridged dimers (see ref 4g).

(13) Neuwald, B.; Caporaso, L.; Cavallo, L.; Mecking, S. J. Am. Chem. Soc. 2013, 135, 1026.

(14) Haras, A.; Anderson, G. D. W.; Michalak, A.; Rieger, B.; Ziegler, T. Organometallics 2006, 25, 4491.

(15) (a) Espinet, P.; Albeniz, A. C.; Casares, J. A.; Martínez-Ilarduya, ́ J. M. Coord. Chem. Rev. 2008, 252, 2180. (b) Hierso, J.-C. In Science and Technology of Atomic, Molecular, Condensed Matter & Biological Systems; Rubén, H. C., Ed.; Elsevier, 2013; Vol. 3, p 285. (c) Hierso, *J.*-C. Chem. Rev. 2014, 114, 4838.

(16) (a) Spannhoff, K.; Kuhl, N.; Kehr, G.; Frö hlich, R.; Erker, G. J. Am. Chem. Soc. 2009, 131, 17836. (b) Dodds, D. L.; Haddow, M. F.; Orpen, A. G.; Pringle, P. G.; Woodward, G. Organometallics 2006, 25, 5937.

(17) An O−O distance of 3.10 Å has been suggested as the cutoff for O−H---O hydrogen bonding. Khan, A. J. Phys. Chem. B 2000, 104, 11268.

(18) The (lone-pair)−P−C1 plane is defined as the plane that bisects the C15−P1−C8 angle. The other (lone-pair)−P−Cipso planes are defined analogously.

(19) Howell, J. A. S.; Fey, N.; Lovatt, J. D.; Yates, P. C.; McArdle, P.; Cunningham, D.; Sadeh, E.; Gottlieb, H. E.; Goldschmidt, Z.; Hursthouse, M. B.; Light, M. E. J. Chem. Soc., Dalton Trans. 1999, 3015.

(20) Bettucci, L.; Bianchini, C.; Meli, A.; Oberhauser, W. J. Mol. Catal. A: Chem. 2008, 291, 57.

(21) Bondi, A. J. Phys. Chem. 1964, 68, 441.

(22) (a) Hudnall, T. W.; Kim, Y.-M.; Bebbington, M. W. P.; Bourissou, D.; Gabbaï, F. o. P. J. Am. Chem. Soc. 2008, 130, 10890. (b) Wade, C. R.; Zhao, H.; Gabbaï, F. o. P. Chem. Commun. 2010, 46, 6380. (c) Moebs-Sanchez, S.; Saffon, N.; Bouhadir, G.; Maron, L.; Bourissou, D. Dalton Trans. 2010, 39, 4417. (d) Kim, Y.; Jordan, R. F. Organometallics 2011, 30, 4250.

(23) Eapen, K. C.; Tamborski, C. J. Fluorine Chem. 1980, 15, 239. (24) (a) Mallory, F. B.; Mallory, C. W. Coupling Through Space in Organic Chemistry. In Encyclopedia of Nuclear Magnet Resonance; Grant, D. M.; Harris, R. K., Eds.; Wiley: Chichester, 1995; p 1491. (b) Kruck, M.; Munoz, M. P.; Bishop, H. L.; Frost, C. G.; Chapman, C. J.; Kociok-Köhn, G.; Butts, C. P.; Lloyd-Jones, G. C. <u>Chem.—Eur. I</u>. 2008, 14, 7808. (c) Bonnafoux, L.; Ernst, L.; Leroux, F. R.; Colobert, F. Eur. J. Inorg. Chem. 2011, 2011, 3387.

(25) (a) Fey, N.; Howell, J. A.; Lovatt, J. D.; Yates, P. C.; Cunningham, D.; McArdle, P.; Gottlieb, H. E.; Coles, S. J. Dalton Trans. 2006, 5464. (b) Mislow, K. Acc. Chem. Res. 1976, 9, 26.

(26) Neuwald, B.; Falivene, L.; Caporaso, L.; Cavallo, L.; Mecking, S. Chem.-Eur. J. 2013, 19, 17773.

(27) For an ideal boat conformation of the $(PO-CF₃)Pd$ chelate ring in 3, the Pd1, O1, C9, and C14 atoms would be coplanar and the corresponding dihedral angle Pd1−O1−C9−C14 would be 0°. In 3, this dihedral angle is 7.3°. The corresponding dihedral angle in 4 is -4.8° .

(28) (a) Sundquist, W. I.; Bancroft, D. P.; Lippard, S. J. J. Am. Chem. Soc. 1990, 112, 1590. (b) Mukhopadhyay, A.; Pal, S. Eur. J. Inorg. Chem. 2006, 2006, 4879. (c) Buckingham, A. D.; Stephens, P. J. J. Chem. Soc. 1964, 4583. (d) Miller, R. G.; Stauffer, R. D.; Fahey, D. R.; Parnell, D. R. *J. Am. Chem. Soc.* 1970, 92, 1511. (e) Brookhart, M.; Green, M. L. H.; Parkin, G. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 6908. (f) Zhang, Y.; Lewis, J. C.; Bergman, R. G.; Ellman, J. A.; Oldfield, E. Organometallics 2006, 25, 3515.

(29) Hierso, J.-C.; Fihri, A.; Ivanov, V. V.; Hanquet, B.; Pirio, N.; Donnadieu, B.; Rebière, B.; Amardeil, R.; Meunier, P. J. Am. Chem. Soc. 2004, 126, 11077.

(30) Meier, U. W.; Hollmann, F.; Thewalt, U.; Klinga, M.; Leskela, ̈ M.; Rieger, B. Organometallics 2003, 22, 3905.

(31) Frew, J. J. R.; Damian, K.; Van Rensburg, H.; Slawin, A. M. Z.; Tooze, R. P.; Clarke, M. L. Chem.-Eur. J. 2009, 15, 10504.

(32) (a) Perrin, C. L.; Dwyer, T. J. Chem. Rev. 1990, 90, 935. (b) Bodenhausen, G.; Ernst, R. R. J. Am. Chem. Soc. 1982, 104, 1304. (33) DFT analysis of the three coordinate species $(2-\{(o-CF_3-F_1)\})$ Ph)₂P}-benzenesulfonate)PdMe found that the $e x o_3$ isomer is ca. 1.9 kcal/mol more stable than the exo_2 isomer. The exo_3 conformation was also found to be the most favorable for $(2-\{(o-CF_3-Ph)_2P\}$ benzenesulfonate)PdMe(ethylene). See ref 26.

(34) Shanan-Atidi, H.; Bar-Eli, K. H. J. Phys. Chem. 1970, 74, 961.

(35) As the temperature is decreased below −90 °C, the δ −53.2 resonance of exo_3 -4 broadens further, eventually broadening nearly fully into the baseline at −120 °C (Figure S14). This broadening is ascribed to restricted rotation of the CF₃ group. The $^4\!J_{\rm PF}$ coupling for the δ −53.2 resonance expected due to the *exo*-conformation of the corresponding CF_3 group is not obs[erved, most](#page-9-0) likely due to the line broadening caused by restricted CF_3 rotation below ca. −90 °C and the exo_2 -4/ex o_3 -4 exchange above this temperature. The other 19 F $\{^1\rm H\}$ resonances also broaden below −90 °C (the one at δ −56.9 most significantly) due to restricted CF_3 rotation.

(36) The barrier for the exchange of the inequivalent CF_3 groups in the rapidly exchanging $e x o_2$ -4/ $e x o_3$ -4 mixture is in the range of that reported ($\Delta G^{\ddagger} > 18.2$ kcal/mol) for CF₃ exchange of "(2-{(o -CF₃- Ph)₂P}-benzenesulfonate)PdMe". This barrier was assigned to aryl rotation. See ref 12 and ref 13.

(37) Siegel, J. S.; Anet, F. A. L. J. Org. Chem. 1988, 53, 2629.

(38) Ladipo, F. [T.](#page-9-0); Ander[son,](#page-9-0) G. K. Organometallics 1994, 13, 303.